
Received: 10 Februari 2024            Revised: 16 Maret 2024              Accepted: 19 Maret 2024 
163 

Advancing Natural Gas Price Predictions with 
ConcaveLSTM 

Mohammad Diqi1, Putra Wanda2, Hamzah3, I Wayan Ordiyasa4, Azzah Fathinah5 

Department of Informatics, 
Faculty of Science and Technology, 
Universitas Respati Yogyakarta, Yogyakarta, Indonesia 
1diqi@respati.ac.id, 2putra.wanda@respati.ac.id, 3hamzah@respati.ac.id, 
4wayan@respati.ac.id, 522220025@respati.ac.id 

Ringkasan 
Studi ini meneliti aplikasi model ConcaveLSTM, pendekatan pembelajaran mesin baru yang 
menggabungkan kekuatan dari Stacked Long Short-Term Memory (LSTM) dan Bidirectional 
LSTM, untuk prediksi harga Gas Alam. Mengingat volatilitas dan kompleksitas pasar energi 
yang inheren, model peramalan yang akurat sangat penting untuk pengambilan keputusan 
yang efektif. Penelitian ini menggunakan dataset komprehensif yang mencakup periode dari 
tahun 1997 hingga 2020, berfokus pada harga harian Gas Alam dalam Dolar AS per Juta unit 
thermal British (Btu). Melalui pengujian yang ketat di berbagai konfigurasi model, studi ini 
mengidentifikasi pengaturan optimal untuk model ConcaveLSTM yang secara signifikan 
meningkatkan akurasi prediksi. Secara spesifik, konfigurasi yang menggunakan 50 langkah 
input dengan jumlah neuron 100 dan 300 menunjukkan kinerja yang lebih unggul, seperti 
dibuktikan oleh nilai Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), dan Mean 
Absolute Percentage Error (MAPE) yang lebih rendah, bersama dengan nilai R-squared (R2) 
yang lebih tinggi. Temuan ini tidak hanya memvalidasi potensi model ConcaveLSTM dalam 
peramalan keuangan tetapi juga menyoroti pentingnya penyetelan parameter dalam 
meningkatkan efikasi model. Meskipun ada beberapa batasan terkait cakupan dataset dan 
variabilitas pasar, hasil penelitian menawarkan wawasan yang menjanjikan untuk 
pengembangan alat peramalan canggih. Arah penelitian masa depan meliputi ekspansi 
dataset, penggabungan pengaruh pasar tambahan, dan analisis komparatif dengan model 
peramalan lainnya. Studi ini berkontribusi pada evolusi aplikasi pembelajaran mesin dalam 
prediksi pasar keuangan, menawarkan dasar untuk eksplorasi lebih lanjut dan implementasi 
praktis di sektor energi. 

Kata kunci: Gas Alam, LSTM, Pembelajaran Mesin, Peramalan Harga, Prediksi Finansial 

Abstract 
This study investigates the application of the ConcaveLSTM model, a novel machine learning 
approach combining the strengths of Stacked Long Short-Term Memory (LSTM) and 
Bidirectional LSTM, for predicting natural gas prices. Given the inherent volatility and 
complexity of energy markets, accurate forecasting models are crucial for effective decision-
making. The research employs a comprehensive dataset from 1997 to 2020, focusing on the 
daily price of natural gas in US Dollars per Million British thermal units (Btu). Through 
rigorous testing across various model configurations, the study identifies optimal settings for 
the ConcaveLSTM model that significantly improve prediction accuracy. Specifically, 
configurations utilizing 50 input steps with neuron counts of 100 and 300 exhibit superior 
performance, as evidenced by lower Root Mean Squared Error (RMSE), Mean Absolute Error 
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(MAE), and Mean Absolute Percentage Error (MAPE), alongside higher R-squared (R2) 
values. These findings validate the ConcaveLSTM model's potential in financial forecasting 
and highlight the importance of parameter tuning in enhancing model efficacy. Despite 
certain limitations regarding dataset scope and market variability, the results offer promising 
insights into developing advanced forecasting tools. Future research directions include 
expanding the dataset, incorporating additional market influencers, and conducting 
comparative analyses with other forecasting models. This study contributes to the evolving 
field of machine learning applications in financial market predictions, offering a foundation 
for further exploration and practical implementation in the energy sector. 

Keywords: Financial Prediction, Machine Learning, Natural Gas, Price Forecasting, LSTM 

1.  Introduction  
As a critical component in the global energy matrix, natural gas plays a vital role in 

meeting the world's energy needs. Compared to other fossil fuel sources, its cleaner nature 
positions natural gas as a preferred option for energy transition and climate change 
mitigation [1]. However, the fluctuating natural gas prices pose significant challenges to 
the global economy. These fluctuations are influenced by various factors, including 
changes in energy policies, global market dynamics, geopolitical conditions, and natural 
disasters [2]. Consequently, the volatility in natural gas prices can impact investment 
decisions in the energy sector, unsettle markets and consumers, and influence government 
policies related to energy and climate change [3]. 

Against this backdrop, the research problem emerges concerning the inaccuracies in 
long-term natural gas price predictions and the difficulties in addressing price volatility. 
Inaccurate predictions can lead to strategic planning and decision-making challenges for 
energy companies, investors, and policymakers, who rely on reliable price projections to 
formulate strategies and policies [4]. Therefore, addressing this issue will improve the 
accuracy of natural gas price predictions and provide a more stable foundation for 
economic decision-making and future energy policy formulation [5]. 

The natural gas price forecasting literature is evolving rapidly, with a shift towards 
more complex and nuanced models. This evolution is underscored by the work of Hong et 
al. [6], who laid a foundational framework by identifying critical factors affecting natural 
gas prices through factor analysis. This early study set the stage for further exploration into 
sophisticated predictive models, aiming to enhance accuracy and reliability. Following this, 
Zhan and Tang [7] introduced a hybrid model that combines quadratic decomposition with 
Long Short-Term Memory (LSTM) networks, specifically addressing the challenge of non-
linearity in natural gas price data. This approach represents a significant advancement in 
the field, demonstrating the potential of combining statistical techniques with machine 
learning to improve forecasting accuracy. 

Further contributions to the field include the work of Jiang et al. [8], who developed a 
hybrid model focusing on the dynamics of monthly consumption and production in the 
United States. Their model emphasizes the critical role of demand and supply fluctuations 
in predicting natural gas prices, highlighting the importance of incorporating 
macroeconomic indicators into forecasting models. Meanwhile, Zheng et al. [9] took a 
different approach by examining the geopolitical impacts on natural gas pricing, 
specifically the effects of the Russia-Ukraine conflict. This study illustrates the necessity of 
integrating geopolitical factors into predictive models to account for external influences on 
market dynamics. Similarly, Pei et al. [10] explored the use of Temporal Convolutional 
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Networks (TCNs) for natural gas price forecasting, showcasing the capacity of deep 
learning algorithms to capture complex temporal patterns in price data. 

The literature reveals a clear trend toward integrating advanced methodologies and 
external factors in natural gas forecasting models. Bai et al. [11] pushed the envelope with 
deep hybrid models forecasting daily natural gas consumption and analyzed its 
complexity. Gao et al. [12] highlighted the importance of model selection through a 
decision support framework tailored for forecasting US natural gas consumption, 
underscoring the critical role of choosing the appropriate model for specific forecasting 
needs. This is complemented by Ding et al. [13], who addressed the multifaceted issue of 
multiple seasonal patterns in consumption forecasting, thus tackling the inherent 
complexity of natural gas demand cycles. 

The holistic approach adopted in recent research integrates advanced computational 
and analytical techniques to address the volatility and complexity of the energy sector. 
Studies by Yang and Choi [14], leveraging machine learning algorithms for forecasting spot 
LNG prices, and Chen et al. [5], exploring the unpredictability of natural gas prices amidst 
uncertainties, exemplify this trend. The effectiveness of combining computational 
techniques was further illustrated by Zhan and Tang [7] through their hybrid model, which 
underscores the field's progression toward more accurate and comprehensive forecasting 
methods. 

Recent advancements also highlight the significant interplay between gas prices and 
macroeconomic indicators, as seen in the work of Mirnezami et al. [15], who explored the 
spillover effects of gas prices on the broader economy. This is complemented by studies 
focusing on the demand side, such as Tong et al.'s optimized Grey Bernoulli model [16] for 
forecasting natural gas consumption among top global consumers. Collectively, these 
contributions underscore the complexity of the natural gas market and the critical role of 
innovative forecasting models and analytical techniques in providing insights into market 
behaviors and facilitating informed decision-making in the energy sector. 

The primary objective of this research is to develop an innovative combination of 
Stacked LSTM [17] and Bidirectional LSTM [18], specifically designed for natural gas price 
prediction, which we call the ConcaveLSTM algorithm. This algorithm aims to leverage 
the strengths of Stacked LSTM, which enhances the depth of learning through multiple 
layers, and Bidirectional LSTM, which improves context understanding by processing data 
in both forward and backward directions. By integrating these methodologies, 
ConcaveLSTM seeks to offer a more accurate and efficient tool for forecasting natural gas 
prices, addressing the complex dynamics and volatility inherent in the energy market. The 
contribution of this study lies not only in its theoretical advancement of machine learning 
algorithms tailored for financial forecasting but also in its practical application, providing 
a robust framework that can significantly benefit energy economists, market analysts, and 
policy-makers in making more informed decisions. By deploying ConcaveLSTM, this 
research endeavors to set a new benchmark in predictive accuracy, thus offering valuable 
insights into future trends and enabling more strategic planning in the energy sector. 

2.  Method 

2.1.  Dataset and Data Preprocessing 
The dataset spans a significant time frame, beginning on January 7, 1997, and extending 

through September 1, 2020. It comprises a solitary principal attribute, "Price," which 
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denotes the daily price in US Dollars per Million British thermal units (Btu). With a total of 
5,953 entries, this dataset offers an extensive view of the natural gas price fluctuations over 
the specified period. 

An initial step in the data preprocessing phase involves eliminating irrelevant or 
invalid data points. Specifically, entries with zero-volume values are removed from the 
dataset, as these may reflect inaccuracies or gaps in data collection. Furthermore, records 
containing empty fields or NaN (Not a Number) values are also purged to maintain the 
cleanliness and integrity of the dataset. 

Following the data cleansing process, normalization is undertaken as the subsequent 
step. This procedure adjusts the data to a uniform scale or a consistent range of values, 
facilitating easier comparison and analysis. The normalization process is mathematically 
formulated as shown in Equation 1: 

Normalized Value =
𝑋𝑋 − min(𝑋𝑋)

max(𝑋𝑋) − min(𝑋𝑋) (1) 

where 𝑋𝑋  denotes the actual price value, min(𝑋𝑋) is the minimum price observed in the 
dataset, and max(𝑋𝑋) represents the maximum price. 

2.2.  Data Splitting 
Following the preprocessing stage, the dataset containing 5,953 records is divided into 

two distinct segments for further analysis. The initial segment includes 5,913 records, of 
which 80% (4,730 records) are designated for training purposes, and the remaining 20% 
(1,183 records) are set aside for validation. This partitioning supports the model's learning 
phase, enabling an evaluation of its efficacy on data it has not previously encountered. The 
secondary segment comprises 40 records, earmarked explicitly for testing the trained 
model's ability to generalize and predict accurately. This approach to data splitting ensures 
an equitable distribution, thereby bolstering the predictive model's robustness and 
dependability through the validation of its performance across both training and novel 
datasets. 

2.3.  ConcaveLSTM Architecture 
The ConcaveLSTM model is an innovative architecture designed for natural gas price 

prediction, leveraging the combined strengths of Stacked LSTM and Bidirectional LSTM. 
This model aims to capture the intricate temporal dependencies and the forward and 
backward context in time series data, thus providing a more accurate and comprehensive 
understanding of natural gas price movements. 

In the Concave LSTM architecture, the Stacked LSTM component involves layering 
multiple LSTM units on top of each other, enhancing the model's ability to learn from 
complex data sequences by adding depth to the network. Mathematically, the operation of 
an LSTM unit can be represented by Equations 2-7. 

Forget gate: 
𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� 

(2) 

Input gate:              
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 

(3) 

Output gate:           
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 

(4) 

New cell state:        
𝐶𝐶𝑡𝑡� = tanh(𝑊𝑊𝐶𝐶 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶) 

(5) 

Final cell state:  
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡�  

(6) 
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Output:  
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) 

(7) 

Here, σ denotes the sigmoid function, 𝑊𝑊 and 𝑏𝑏 represent the weights and biases of the 
respective gates, ℎ𝑡𝑡 is the output at time 𝑡𝑡, 𝑥𝑥𝑡𝑡 is the input at time 𝑡𝑡 and 𝐶𝐶𝑡𝑡 is the cell state at 
time 𝑡𝑡. 

The Bidirectional LSTM extends this concept by processing the data forward and 
backward, thus capturing information from past and future states. This is mathematically 
represented by combining the outputs of two LSTMs, one processing the input in the 
forward direction and the other in the reverse direction, as shown in Equations 8-10. 

Forward pass: 
ℎ𝑡𝑡
𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑡𝑡) 

(8) 

Backward pass:          
ℎ𝑡𝑡𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑇𝑇−𝑡𝑡+1) 

(9) 

Combined output:       
ℎ𝑡𝑡 = �ℎ𝑡𝑡

𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,ℎ𝑡𝑡𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� 
(10) 

The ConcaveLSTM model merges these two components by concatenating the output 
of the Stacked LSTM and the Bidirectional LSTM, as shown in Figure 1. This concatenated 
output is passed through a dense layer to produce the final prediction. The architecture 
thus takes advantage of the deep learning capabilities of the Stacked LSTM to process 
sequential data and the Bidirectional LSTM's ability to understand the context in both 
directions, culminating in a powerful model for predicting natural gas prices. 

 
Figure 1. ConcaveLSTM architecture 

2.4.  Parameter Settings 
The ConcaveLSTM model for natural gas price prediction is configured with various 

parameter settings to optimize its performance, as shown in Table 1. The model aims to 
predict future prices 40 steps ahead, utilizing input sequences of varying lengths, precisely 
30, 50, and 70-time steps, to accommodate the dynamic nature of the data. It employs a 
layered architecture with neurons set at different scales across its layers, comprising 100, 
200, and 300 neurons, respectively, to enhance its learning capacity and depth. The model 
leverages the 'adam' optimizer for efficient gradient descent optimization, ensuring swift 
convergence to the minimum loss. The loss function used is 'mean squared error' (mse), 
which quantifies the difference between predicted and actual values, making it a suitable 
choice for regression tasks like price prediction. It undergoes 100 epochs of training to train 
the model, allowing it to learn from the dataset iteratively. The training process is batched 
with a size of 32, which balances the need for computational efficiency and the ability to 
effectively converge to an optimal solution. 
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Table 1. Parameter settings 
Parameter Description 

Inp 
The input layer has a shape of (n_steps_in, n_features), serving as the initial point for the 
data. 

n_steps_in The number of time steps (lags) used as input to predict the future value. 
n_features The number of features in the dataset at each time step. 
N The number of neurons in each LSTM layer. 
activation The activation function used by the LSTM units is set to relu (Rectified Linear Unit). 
dropout rate The fraction of the input units to drop is set to 0.2. 

Dense 
A dense layer that produces the output predictions, with the number of units equal to 
n_features. 

optimizer The optimization algorithm used to minimize the loss function set to adam. 
Loss The loss function measures the model's prediction error, set to mean squared error (mse). 

2.5.  Model Evaluation 
Evaluating the performance of the ConcaveLSTM model in predicting natural gas 

prices involves using several metrics to assess its accuracy and reliability comprehensively. 
These metrics include Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 
Mean Absolute Percentage Error (MAPE), and R-squared (R2).  

RMSE measures the model's prediction errors, calculated as the square root of the 
average of the squared differences between the predicted and actual values. The RMSE is 
given by Equation 11. 

𝑅𝑅𝐿𝐿𝐿𝐿𝑅𝑅 = �
1
𝑛𝑛�

(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

 (11) 

where 𝑦𝑦𝑖𝑖  represents the actual values, 𝑦𝑦𝚤𝚤�  represents the predicted values, and 𝑛𝑛  is the 
number of observations. 

MAE measures the average magnitude of the errors in a set of predictions without 
considering their direction. It's calculated in Equation 12. 

𝐿𝐿𝑀𝑀𝑅𝑅 =
1
𝑛𝑛�

|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�|
𝑛𝑛

𝑖𝑖=1

 (12) 

MAPE is a measure of prediction accuracy expressed as a percentage, providing insight 
into the relative error between the predicted and actual values. The MAPE is calculated in 
Equation 13. 

𝐿𝐿𝑀𝑀𝑀𝑀𝑅𝑅 =
100%
𝑛𝑛 ��

𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 (13) 

R2, also known as the coefficient of determination, quantifies the proportion of the 
variance in the dependent variable that is predictable from the independent variables, 
offering a measure of how the model replicates well-observed outcomes. R2 is calculated 
in Equation 14. 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

 (14) 

where 𝑦𝑦� is the mean of the actual values. 
These metrics offer a holistic view of the ConcaveLSTM model's performance, 

providing insights into its precision, accuracy, and effectiveness in forecasting natural gas 
prices. 
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3.  Result 
This study uses the ConcaveLSTM model to forecast natural gas prices over a 40-day 

horizon, employing a specific dataset and predefined parameter settings. The model's 
architecture, integrating Stacked LSTM and Bidirectional LSTM components, aims to 
leverage temporal dependencies and contextual information from the data to enhance 
prediction accuracy. The performance evaluation of the ConcaveLSTM model, based on 
different input sequence lengths (n_steps_in) and varying numbers of neurons (n_units), 
is meticulously documented. Through a comprehensive analysis encapsulated in Table 2, 
the model's effectiveness is assessed using a suite of metrics, including Root Mean Squared 
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and 
the coefficient of determination (R2). These metrics quantify the model's predictive 
accuracy, offering insights into its capability to navigate the complexities inherent in 
natural gas price forecasting. 

Table 2. Comparative Analysis of ConcaveLSTM in Predicting Natural Gas Prices Over 40 Days 
prediction n_steps_in   n_units  RMSE   MAE  MAPE     R2 

1 30 100 0,00695 0,00536 0,08969 0,95989 
2 30 200 0,00891 0,00818 0,14443 0,93403 
3 30 300 0,00758 0,00321 0,03222 0,95225 
4 50 100 0,00343 0,00239 0,03457 0,99021 
5 50 200 0,00552 0,00524 0,08699 0,97469 
6 50 300 0,00337 0,00188 0,02724 0,99060 
7 70 100 0,01300 0,01282 0,22136 0,85964 
8 70 200 0,00403 0,00333 0,05505 0,98651 
9 70 300 0,00648 0,00371 0,04266 0,96518 

 
The analysis of the ConcaveLSTM model's performance across various configurations 

reveals insightful patterns regarding its predictive accuracy for natural gas prices. Notably, 
models with a 50-step input sequence demonstrate a superior balance between complexity 
and prediction accuracy, as evidenced by the lowest RMSE and MAE values, particularly 
with 100 and 300 neurons (predictions 4 and 6), and remarkably high R² values exceeding 
0.99. This suggests an optimal level of model complexity that captures the underlying 
patterns in the data without overfitting. In contrast, models trained with a 70-step input 
sequence exhibit a significant increase in prediction error and variability, especially 
evident in prediction 7 with the highest RMSE, MAE, and MAPE values, alongside the 
lowest R2 score, indicating potential overfitting or insufficient model capacity to handle 
the increased sequence length. Interestingly, increasing the number of units to 200 and 300 
for the 70-step input sequence significantly improves the model's performance, as seen in 
predictions 8 and 9, highlighting the importance of adjusting the model's complexity based 
on the input sequence length. This analysis underscores the critical role of tuning model 
parameters, such as input sequence length and the number of neurons, in optimizing 
forecasting models for natural gas prices. 

Figure 2 displays the actual values of natural gas prices and the nine ensuing 
predictions over a 40-day horizon, with the actual prices delineated by a blue line and the 
predictions by various colored lines. This visual representation underscores the 
ConcaveLSTM model's adeptness in reflecting the trends and oscillations within the 
natural gas price series. The graphical portrayal enables a straightforward evaluation of 
how well the model predicts future prices, highlighting its trend prediction efficacy and 
alignment with actual price movements over the forecast period. 
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Figure 2. Visual Representation of Predicted Versus Actual Wind Power Data 

The graphical analysis in Figure 2 vividly compares the ConcaveLSTM model's 
forecasted natural gas prices against real market values, with the actual prices illustrated 
by a blue line that acts as a reference for evaluating the model's forecast accuracy. A 
detailed observation reveals that the model proficiently traces the general direction and 
fluctuations of the natural gas market prices. The proximity of the forecasted lines to the 
real price trajectory indicates the model's competence in identifying and adapting to the 
market's pattern variations. This closeness between forecasted and actual prices 
demonstrates the model's capability to accurately forecast the market's future course, 
highlighting its effectiveness in predicting significant market movements and inflection 
points. 

4.  Discussion 

4.1.  Summarization of Key Findings 
This research addressed the complex challenge of predicting natural gas prices by 

utilizing the innovative ConcaveLSTM model, designed to effectively navigate the energy 
market volatile and intricate dynamics. Through a strategic integration of Stacked LSTM's 
depth and Bidirectional LSTM's bidirectional learning capabilities, the ConcaveLSTM 
model achieved significant improvements in predictive accuracy. Compared to previous 
methodologies, such as the hybrid model combining quadratic decomposition with LSTM 
networks proposed by Zhan and Tang [7], which aimed to tackle the non-linearity in 
natural gas price data, the ConcaveLSTM model demonstrated superior performance. 
Specifically, configurations utilizing 50 input steps paired with either 100 or 300 neurons 
stood out, offering the lowest prediction errors and highest congruence with real market 
movements. These results highlight the ConcaveLSTM model's advanced capacity to 
capture both immediate price fluctuations and overarching market trends and represent a 
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significant advancement over existing models, like Zhan and Tang's hybrid approach, in 
addressing the forecasting challenges of financial markets. Therefore, the ConcaveLSTM 
model's achievements indicate a meaningful leap forward in the pursuit of more accurate 
and reliable energy price forecasting tools. 

4.2.  Result Interpretations 
The analysis of the ConcaveLSTM model's performance in predicting natural gas prices 

highlighted discernible patterns and relationships, particularly the model's enhanced 
accuracy with specific input sequence lengths and neuron configurations. The optimal 
performance with 50 input steps, particularly when paired with 100 and 300 neurons, 
suggests a significant relationship between model complexity and its ability to process and 
predict based on the temporal dynamics of the data, as evidenced by R2 values of 0.99021 
and 0.99060, respectively. These results align with expectations that increasing model 
depth and bidirectional learning would improve prediction accuracy by capturing more 
nuanced market behaviors. However, despite increased neuron counts, the diminished 
performance at 70 input steps was unexpected, indicating potential overfitting or the 
model's limits in handling extended sequences. This suggests alternative explanations, 
such as the diminishing returns of adding complexity beyond a certain threshold, and 
highlights the importance of balance between model capacity and the dataset's 
characteristics. Such findings invite further investigation into the trade-offs between model 
complexity and prediction efficiency, suggesting that the optimal model configuration may 
depend on the specific temporal patterns and volatility inherent in the analyzed financial 
time series data. 

4.3.  Research Implications 
The findings from this study on employing the ConcaveLSTM model for predicting 

natural gas prices carry significant implications for both theoretical and practical aspects 
of financial forecasting. By demonstrating the model's enhanced predictive accuracy, this 
research contributes new insights into the ongoing dialogue within the literature on the 
efficacy of advanced machine learning techniques in financial markets. It validates the 
theoretical proposition that combining stacked and bidirectional LSTM layers can more 
adeptly capture the multifaceted nature of market price movements, aligning with 
previous studies that have underscored the potential of hybrid models in improving 
forecast performance. Practically, the research offers a promising tool for market analysts 
and investors, providing a more reliable basis for making informed decisions in the volatile 
energy sector. Furthermore, by identifying the optimal configurations for model 
performance, this study sheds light on the critical balance between model complexity and 
prediction accuracy, offering a nuanced understanding that can guide future research and 
application in financial time series forecasting. 

4.4.  Research Limitations 
While advancing our understanding of using the ConcaveLSTM model for natural gas 

price prediction, this study has limitations. The specific dataset used, covering a fixed 
historical period and the model's configurations selected for testing, might not fully 
capture the entire spectrum of market dynamics or the potential of the ConcaveLSTM 
model under varying conditions. Such limitations could impact the generalizability of the 
findings to other time frames or market conditions that exhibit different patterns of 
volatility or trend behaviors. Additionally, despite its innovative combination of LSTM 
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approaches, the focus on a singular model architecture may overlook the potential benefits 
of integrating other data sources or predictive indicators. However, the results remain 
valid and valuable for answering the research question, as they demonstrate the model's 
capability to predict natural gas prices with significant accuracy, providing a solid 
foundation for future research to build upon. The study successfully identifies 
configurations that optimize prediction performance, offering insights that contribute to 
the broader field of financial market forecasting and machine learning applications. 

4.5.  Recommendations for Future Research 
Future research in natural gas price prediction using machine learning models like 

ConcaveLSTM should consider expanding the dataset to include more recent data and 
potentially incorporating additional variables that could influence natural gas prices, such 
as weather conditions, economic indicators, and geopolitical events. This would enhance 
the model's ability to capture a wider array of factors affecting price fluctuations and test 
the robustness and adaptability of the ConcaveLSTM model under different market 
conditions. Moreover, comparative studies with other advanced machine learning and 
deep learning models could offer insights into various approaches' relative strengths and 
weaknesses, providing clearer guidance for practical implementation in real-world 
forecasting tasks. Experimenting with ensemble methods that combine the predictions of 
multiple models could also improve accuracy and reliability. Lastly, conducting case 
studies on applying these models in investment strategies and risk management within the 
energy sector could illustrate their practical value and encourage broader adoption. 

5.  Conclusion 
In conclusion, this research has demonstrated the efficacy of the ConcaveLSTM model 

in predicting natural prices, showcasing its potential as a powerful tool for forecasting in 
the volatile energy market. The meticulous analysis revealed that specific configurations 
of the model, particularly those utilizing 50 input steps with either 100 or 300 neurons, 
significantly enhance predictive accuracy. These findings not only affirm the theoretical 
benefits of combining stacked and bidirectional LSTM approaches for capturing complex 
temporal patterns and market dynamics but also provide practical insights for financial 
analysts and investors seeking to navigate the uncertainties of the natural gas market. 
Despite limitations related to the dataset's scope and the model's generalizability, the 
research outcomes remain robust, offering a promising direction for future exploration in 
financial time series forecasting. Recommendations for extending the research frontier 
include diversifying the dataset, exploring additional influencing factors, and comparing 
with other forecasting methodologies, which could further refine and validate the 
ConcaveLSTM model's applicability and effectiveness. Ultimately, this study contributes 
valuable knowledge to the evolution of machine learning applications in financial 
forecasting, paving the way for more informed decision-making in the energy sector. 
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